Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available June 10, 2026
-
Abstract Microplastics and nanoplastics (collectively, MNPs) are increasingly entering soils, with potential adverse impacts to agriculture and groundwater. Environmental detection, characterization, and quantification of MNPs is difficult and subject to artifacts, often requiring labor-intensive separation from environmental matrices. These analytical challenges make it difficult to conduct experiments investigating specific MNP characteristics influencing their transport and fate, particularly when examining multiple plastic types at low concentrations. By synthesizing a suite of metal-tagged polymers, which are cryomilled to create polydisperse fragmented particle suspensions, single particle ICP-MS (spICP-MS) can be used to quantify MNP particle size and concentration in controlled fate and transport studies. Use of unique metal-polymer pairs enables accurate, simultaneous analysis of multiple MNP types which can be used to track total particle transport and retention within a variety of environmental matrices. This was demonstrated using saturated sand column transport experiments to quantify the movement of two plastics having different properties: tin-tagged polystyrene (Sn-PS) and tantalum-tagged polyvinylpyrrolidone (Ta-PVP). The behavior of these polydisperse, fragmented MNPs was compared to that of fluorescent, carboxylated monodisperse PS spherical microspheres (Fl-PS). Mobility of all MNP types increased with decreasing particle size, and hydrophilic Ta-PVP particles migrated more effectively than the hydrophobic Sn-PS particles. Furthermore, the addition of humic acid (HA) to the carrier solution increased the colloidal stability of both metal-tagged MNP suspensions, resulting in much greater elution from the column than in HA-free deionized water or moderately- hard water (ionic strength = 5mM). This combination of particle synthesis and spICP-MS analysis provides insights into the transport of MNP having physical properties that are representative of environmental MNPs and opens up a broad range of applications for study of MNP environmental fate and transport.more » « less
-
ION ITM (Ed.)This paper describes the development, implementation, and testing of a GNSS jammer localizer using power measurement profiles collected during un-crewed aerial system (UAS) fly-bys. A linearized measurement equation based on the Friis power transmission formula is derived in which RF channel propagation parameters are grouped into a single parameter for estimation. Synchronized power and UAS position measurements are processed in a batch-type sequential non-linear least squares algorithm for simultaneous estimation of static jammer position and received power model parameters. We develop a low size, weight, power, and cost (SWAP-C) quad-rotor UAS test bed that can collect and time-stamp power measurements with UAS position. Since GNSS jamming is illegal, a LoRa 868 MHz transmitter is used as a surrogate GNSS jammer during field testing – providing Received Signal Strength Indicator (RSSI) measurements to the LoRa receiver onboard the UAS. Testing is conducted at the Virginia Tech Kentland Experimental Aerial Systems Lab, where emitter localization is evaluated for three different trajectories. Experimental performance analysis suggests that meter-level localization accuracy is achievable with prior knowledge on source location and by accounting for antenna gain pattern variations over time in the estimation process with a first order Gauss Markov Process.more » « less
An official website of the United States government
